heliegs

Test Manual

Version : 0.1 Date : 28 / 08 / 2018

Table of Contents

Table of Contents	2
Product overview	3
Hardware Description	4
Board Specifications	4
Block Diagram	5
Helios4 Carrier Board	5
A388 System-On-Chip	5
Interfaces List	6
Schematics	8
Operating Manual	9
Peripheral Kit	9
Software Install	12
Writing an image to a microSD Card	12
System Setup	13
Test Application	15
Network Config and Credentials	15
Connect to Helios4	15
Test Suite Usage	17
Launch Application	17
Run All tests	17
Run SATA test	18
Run MicroSD test	19
Run USB test	19
Display Status	20
Troubleshooting	21
Troubleshooting table	21
Serial Console Access	23
Under Windows	23
Under Linux (via Terminal)	25
Troubleshooting commands	26
Check all drives are detected	26
Check IP address is correct	26
Check correct System Version is running	27
Boot Screen	28
U-Boot	28
Linux	30

Product overview

Helios4 is a powerful ARM based board specially designed for Network Attached Storage. It harnesses its processing capabilities from the **ARMADA 38x-MicroSoM** from <u>SolidRun</u>.

The **Marvell ARMADA® 388** is a robust and energy-efficient System on Chip (SoC) with a collection of high speed interfaces especially suited for headless data processing, networking and storage. This Dual-core ARM Cortex A9 CPU clocked at 1.6 Ghz, paired with 2GB of ECC memory, integrates a Cryptographic and XOR DMA engines to provide the best level of performance and reliability for NAS functionalities.

Hardware Description

Board Specifications

CPU Model	Marvell Armada 388 (88F6828) ARM Cortex-A9
CPU Architecture	ARMv7 32-bit
CPU Frequency	Dual Core 1.6 Ghz
Additional Features	- RAID Acceleration Engines - Security Acceleration Engines - Wake-on-LAN
System Memory	2GB DDR3L ECC
SATA 3.0 Ports	4
Max Raw Capacity	48 TB (12 TB drive x 4)
GbE LAN Port	1
USB 3.0	2
microSD (SDIO 3.0)	1
GPIO	12
I2C	1
UART	1 (via onboard Micro-USB converter)
Boot Mode Selector	- SPI - SD Card - UART - SATA
SPI NOR Flash	32Mbit onboard
PWM FAN	2
DC input	12V / 8A

Block Diagram

Helios4 Carrier Board

A388 System-On-Chip

Interfaces List

Name	Peripheral Type	Connector Type	Details
CON2	Serial port	Micro-USB Connector	Via onboard FTDI USB-to-UART0 bridge
J8	RC Battery	Not populated	External battery source for RTC clock
18	12C	4x1 Pin Male Header	I2C Channel 1
J10	Fan	4x1 Pin Male Header	PWM and RPM support

J12	GPIO	7x2 Pin Male Header	GPIO configurable as input or output Via IO Expander on I2C Channel 0
J13	Serial port	Not populated	SoM UART0 interface
J14	HDD Power	Molex 4-Pin Female	Rated for 2x HDD
J15	LAN	RJ45	Gigabit Ethernet
J16	DC connector	Kycon 4-Pin Mini-DIN	DC input 12V / 8A
J17	Fan	4x1 Pin Male Header	PWM and RPM support
J18	LED Panel	5x2 Pin Male Header	Expansion port of on-board LED
J19	HDD Power	Molex 4-Pin Female	Rated for 2x HDD
SW1	Boot Mode	Dip Switch	Boot mode selector : SPI,MMC,UART,SATA
SW2	LED Mode	Dip Switch	LED mode selection : board or expansion panel
U3	microSD	Push-Push card connector	Support SDHC and SDXC
U4	USB 3.0	Dual Port USB3.0	Туре А
U16	Reset	Push Button	CPU Reset
U10	SATA	SATA 3.0	Port 0 (SATA1)
U11	SATA	SATA 3.0	Port 1 (SATA2)
U12	SATA	SATA 3.0	Port 2 (SATA3)
U13	SATA	SATA 3.0	Port 3 (SATA4)

Schematics

- Carrier Board Schematics :
 <u>https://wiki.kobol.io/files/carrier/Helios4_Schematics_R1-1.pdf</u>
- System-On-Module Schematics : https://wiki.kobol.io/files/som/a38x-microsom-schematics-simplified-rev2.00.pdf

Operating Manual

This section explains how to setup and operate Helios4 in order to exercise all its high speed interfaces.

Helios4 exposes the following high speed interfaces :

- SATA 3.0 (4x)
- USB 3.0 (2x)
- Ethernet
- SDIO

Peripheral Kit

The following peripheral kit is required to exercise all the interfaces listed above.

Software Install

Helios4 is supported by <u>Armbian</u> Linux distro which provides Debian and Ubuntu based images. The latest release are Armbian Stretch (Debian) and Armbian Bionic (Ubuntu) with Linux Kernel 4.14.

A customized version of Armbian Stretch that includes the Helios4 **Test Application** is provided for the purpose of running the tests described in this manual.

If no pre-installed microSD cards were provided you can download the image <u>here</u> and follow the below instruction on how to write an image on a microSD Card.

Note : Archives can be uncompressed with 7-Zip on Windows, Keka on OS X and 7z on Linux (apt-get install p7zip-full). RAW images can be written with Etcher (all OS).

Writing an image to a microSD Card

Etcher is a graphical SD card writing tool that works on Mac OS, Linux and Windows, and is the easiest option for most users. To write your image with Etcher:

- 1. <u>Download Etcher</u> and install it on your computer.
- 2. Insert the microSD Card inside your SD card reader (microSD to SD adapter might be needed).
- 3. Open Etcher and select from your local storage the Helios4 .img.xz file you have downloaded.
- 4. Select the microSD Card you wish to write your image to.
- 5. Review your selections and click 'Flash!' to begin writing data to the microSD Card.

			0 \$
+		4	
Select image			
ETCHER	esin.io		

System Setup

System Setup Diagram

- 1. Insert MicroSD Card
- 2. Plug SATA Data, SATA Power, and USB cables
- 3. Plug Ethernet cable
- 4. Plug PSU cable (DC side)
- 5. Confirm all connection, peripheral does not touch each other
- 6. Plug PSU to AC source

Setup example :

Once the system is powered up, you will see the *LED8* lighting up. After a 15-30 seconds you should see the *LED1* blinking which indicates the Operating System is up and running.

Test Application

The Helios4 Test Suite provides an easy dialog menu where you can toggle for each interface background I/O operations that will exercise the interface.

The I/O operations that exercise the interfaces are generated by *fio* tool. The source code of the Helios4 Test Suite can be found <u>here</u>.

To operate the Test Suite you will need to connect to Helios4 via SSH.

Network Config and Credentials

Helios4 OS has been configured with following configuration:

Network	IP Address	10.10.10.1
	Netmask	255.255.255.0
Credential	Username	root
	Password	root

Connect to Helios4

1. Set up Test PC network interface with following configuration

IP Address: 10.10.10.10 Netmask: 255.255.255.0

2. Connect to Helios4 via SSH.

a. Under Windows

- a) <u>Download PuTTY</u> and install it on your computer.
- b) Run PuTTY from start menu
- c) Setup the connection and press Open

Host Name (or IP address)	10.10.10.1
Port	22
Connection type	SSH

Session	Basic options for your PuT	TV session
		11 3033011
- Terminal	Specify the destination you want to o	connect to
- Keyboard	Host Name (or IP address)	Port
Bell	10.10.10.1	22
Window Appearance Behaviour Translation Colours Connection Data Proxy	O Raw O Telnet O Riogin (Load, save or delete a stored session Saved Sessions Default Settings) SSH () Serial n Load Save
Telnet		Delete
⊞ SSH ⊕ SSH	Close window on exit:	y on clean exit

d) Login screen will appears, enter the credential.

b. Under Linux

a) Open Terminal and run

ssh root@10.10.10.1

b) Login screen will appears, enter the credential.

Test Suite Usage

Launch Application

To start Helios4 Test Suite use the following command:

		Helios4 To	est Suite		+	
Simple	User Interf	ace to ex	ercise Helio	s4 components	5.	
Please to dis	select whic play test st	h compone atus.	nt to test o	or select "Sta	atus"	
	ATA	Run SATA	(U10-U13)tes	t >>		
	MicroSD USB	Run Micro	SD (U3) test torage (U4)	test >>		
i	Status	Display to	est status			
+					+	
	< <mark>s</mark> el	ect>	< Exit >		1	

Run All tests

To automatically start all interface tests at once (SATA, MicroSD and USB), start the Test Suite with *--all* parameter:

Run SATA test

Select **SATA** submenu, then select which SATA port to test and press **Apply**.

"ata1" to test SATA device connected to *U10-SATA1* header "ata2" to test SATA device connected to *U11-SATA2* header "ata3" to test SATA device connected to *U12-SATA3* header "ata4" to test SATA device connected to *U13-SATA4* header

Note: Observe *LED3*, *LED4*, *LED5* and *LED6* activity that indicate respectively *SATA1*, *SATA2*, *SATA3* and *SATA4* activity. The LED will blink for the respective SATA port when the test is running.

Run MicroSD test

Select MicroSD submenu. The test will start immediately.

Run USB test

Select **USB** submenu, then select which USB port to test and press **Apply**.

Select USB Port (U	4) to test	
[*] usb	1 Upper USB Port 2 Lower USB Port	ļ
+		····+
< <mark>A</mark> pply >	<return></return>	+
< <mark>A</mark> pply >	<return></return>	

Note: Observe *LED7* activity, it will blink while USB tests are running.

Display Status

To display which test is running or which one is stopped, go to **Status** submenu.

For example here all interface tests are running except MicroSD card.

Troubleshooting

Troubleshooting table

Problem	Possible Cause	Solution
Cannot connect to Helios4	Faulty power supply	Verify whether LED8 is turned on. If it is not, tighten PSU cable.
		If problem still occurs, replace the PSU.
	OS failure	Verify whether LED1 is blinking. If it is not, reset or power cycle.
	Network down	Verify whether Ethernet LED turned on. If it is not, try to unplug and plug the network cable.
	Wrong network configuration	Configure Test PC network as instructed in <u>Network</u> <u>Config and Credentials</u> .
	Corrupt filesystem	Reflash the OS image as instructed in <u>Writing an image to a microSD Card</u> .
		If problem still occurs, replace the MicroSD card.
Cannot launch Helios4 Test application	Wrong software on microSD card	<u>Check correct System</u> <u>Version is running</u> . If wrong version, reflash the OS image as instructed in <u>Writing an image to a</u> <u>microSD Card</u> .
	Corrupt filesystem	Reflash the OS image as instructed in <u>Writing an image to a microSD Card</u> .
		If problem still occurs, replace the MicroSD card.

Cannot start test on one or more SATA Ports	SATA cable loose connection	<u>Check whether all drives are</u> <u>detected</u> . Power off the system, tighten the SATA cable and power on. If problem still occurs, replace the cable.
	Broken SATA drive	<u>Check whether all drives are</u> <u>detected</u> . Replace the drive.
Cannot start test on one or more USB Ports	USB extension cable	Check whether all drives are detected. Power off the system, tighten the USB cable and power on. If problem still occurs, replace the cable.
	Broken USB drive	<u>Check whether all drives are</u> <u>detected</u> . Replace the drive.
Helios4 system stops to respond	Network down	Verify whether Ethernet LED turned on. If it is not, try to unplug and plug the network cable.
	System crash/panic	Verify whether LED2 is blinking red. If yes, reset or power cycle.

Fault (red) LED, blinking when kernel panic occurred

Serial Console Access

Plug in USB cable to Helios4 micro USB (CON2) connector and the other end to Test PC.

Under Windows

<u>Download Virtual COM Port (VCP) driver</u> and install. Open Device Manager, find USB Serial *Port* under "Ports (COM & LPT)". Open *Properties* of the port.

Verify that **FTDI** is the Manufacturer. Take note on the COM number.

USB Serial Port (COM3) Device type: Ports (COM & LPT) Manufacturer: FTDI Location: on USB Serial Converter Device status This device is working property.	USB Serial Port (COM3) Device type: Ports (COM & LPT) Manufacturer: FTDI Location: on USB Serial Converter Device status This device is working property.	ieral	Port Settings	Driver	Details	Events		
Device type: Ports (COM & LPT) Manufacturer: FTDI Location: on USB Serial Converter Device status This device is working property.	Device type: Ports (COM & LPT) Manufacturer: FTDI Location: on USB Serial Converter Device status This device is working properly.	5	USB Serial P	ort (COM	3)			
Manufacturer: FTDI Location: on USB Serial Converter Device status This device is working properly.	Manufacturer: FTDI Location: on USB Serial Converter Device status This device is working properly.		Device type:	P	orts (COM	& LPT)		
Location: on USB Serial Converter Device status This device is working properly.	Location: on USB Serial Converter Device status This device is working property.		Manufacturer	: F	TDI			
Device status [This device is working property.	Device status [This device is working property.		Location:	or	n USB Ser	rial Conver	ter	

Helios4 Serial Port assigned as COM3

	Run	PuTTY	from	Start	Menu.	and	setup	the	connection	and	press	Open
--	-----	-------	------	-------	-------	-----	-------	-----	------------	-----	-------	------

Serial line	Assigned COM number in Device Manager
Speed	115200
Connection type	Serial

PuTTY Configuration		? X					
ategory:	53						
- Session	Basic options for your PuTTY session						
Logging	Specify the destination you want to c	onnect to					
E Keyboard	Serial line	Speed					
Bell	COM3	115200					
Features	Connection type:						
- Window	O Raw O Telnet O Riogin C	SSH Senal					
Behaviour	Load, save or delete a stored session	1					
Translation	Saved Sessions						
Selection							
- Connection	Default Settings	Load					
Data		Save					
Telnet		Delete					
⊡ - SSH							
I Serial	Close window on exit: Always O Never O Only on clean exit						
About Help	Open	Cancel					

Under Linux (via Terminal)

Install picocom (under Debian/Ubuntu)

root@helios4-test~# apt-get install picocom

Connect to serial (usually recognised as /dev/ttyUSB0) with picocom

; picocom v1.7	~\$ picocom -b 115200 /dev/ttyUSB0
port is	: /dev/ttyUSB0
flowcontrol	: none
baudrate is	: 115200
parity is	: none
databits are	: 8
escape is	: C-a
local echo is	: no
noinit is	: no
noreset is	: no
nolock is	: no
send_cmd is	: SZ -VV
receive_cmd is	: rz -vv
imap is	
omap is	
emap is	: crcrlf,delbs,
Terminal ready	
Debian GNU/Lin	ux 8 helios4 ttyS0
helios4 login:	

Note: To exit picocom do Ctrl-a then Ctrl-x

Troubleshooting commands

Check all drives are detected

root@helios4-test~# lsblk

You should see the following result:

NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPOINT	Î
sda	8:0	1	111.8G	0	disk	A CONTRACTOR OF	
sdb	8:16	1	111.8G	0	disk		4x SSD Drives
sdc	8:32	1	111.8G	0	disk	ſ	TA GOD DITIES
sdd	8:48	1	111.8G	0	disk	J	
sde	8:64	1	28.7G	0	disk	٦	2 VISB Drives
sdf	8:80	1	28.7G	0	disk		- 2X OSD Drives
mmcblk0	179:0	Θ	14.9G	0	disk		— MicroSD Card
-mmcblk0p1	179:1	Θ	14.7G	0	part	1	
zram0	253:0	Θ	50M	0	disk	/var/log	
zram1	253:1	Θ	504.4M	0	disk	[SWAP]	
zram2	253:2	Θ	504.4M	0	disk	[SWAP]	

Check IP address is correct

root@helios4-test~# ifconfig eth0

You should see the following result:

Check correct System Version is running

 Check Kernel Build version root@helios4-test~# uname -a

You should see the following result:

Linux helios4 4.14.53-mvebu #3 SMP Wed Jul 4 14:27:00 UTC 2018 armv7l GNU/Linux

 Check OS Build version root@helios4-test~# cat /etc/armbian-release

You should see the following result:

Check Helios4 Test Suite version

root@helios4-test~# helios4_test -v

You should see the following result:

Helios4 Test Suite - Version 0.2

Boot Screen

U-Boot

```
BootROM - 1.73
Booting from MMC
General initialization - Version: 1.0.0
AVS selection from EFUSE disabled (Skip reading EFUSE values)
Overriding default AVS value to: 0x23
Detected Device ID 6828
High speed PHY - Version: 2.0
Init Customer board board SerDes lanes topology details:
| Lane # | Speed| Type |
   _____|
       | 3 | SATAO |
    0
  1 | 5 | USB3 HOSTO |
2 | 3 | SATA1 |
| 3 | 3 | SATA3
| 4 | 3 | SATA2
| 5 | 5 | USB3 H
       | 5 | USB3 HOST1 |
_____
High speed PHY - Ended Successfully
DDR3 Training Sequence - Ver TIP-1.46.0
DDR3 Training Sequence - Switching XBAR Window to FastPath Window
DDR Training Sequence - Start scrubbing
DDR Training Sequence - End scrubbing
DDR3 Training Sequence - Ended Successfully
BootROM: Image checksum verification PASSED
| \rangle |
                        | \/ | ______ ____ _____
                         \setminus | |
/ | |
|_| |_|\_,_|_| \_/ \_
                       | |_
       | | | |
               _| |_) | (_) | (_) | |
       \____
                ** LOADER **
U-Boot 2013.01 (Aug 28 2018 - 07:04:37) Marvell version: 2015 T1.0p16
Board: Helios4
SoC: MV88F6828 Rev A0
     running 2 CPUs
CPU:
     ARM Cortex A9 MPCore (Rev 1) LE
     CPU 0
      CPU @ 1600 [MHz]
      L2 @ 800 [MHz]
```

TClock @ 250 [MHz] DDR3 @ 800 [MHz] DDR3 32 Bit Width, FastPath Memory Access, DLB Enabled, ECC Enabled DRAM: 2 GiB MMC: mv sdh: 0 *** Warning - bad CRC, using default environment USB2.0 0: Host Mode USB3.0 0: Host Mode USB3.0 1: Host Mode 0x7fee6000:0x7ff978f0 Map: Code: BSS: 0x7ffef2fc 0x7f9e3f20 Stack: 0x7f9e4000:0x7fee6000 Heap: U-Boot Environment: 0x000fe000:0x00100000 (MMC) Board configuration detected: Net: | port | Interface | PHY address | |-----| |egiga0 | RGMII | 0x00 egiga0 [PRIME] Hit any key to stop autoboot: 0 Trying to boot from MMC 1604 bytes read in 36 ms (43 KiB/s) ## Executing script at 03000000 Boot script loaded from mmc 105 bytes read in 29 ms (2.9 KiB/s) 19252 bytes read in 65 ms (289.1 KiB/s) 4687037 bytes read in 291 ms (15.4 MiB/s) 5605552 bytes read in 350 ms (15.3 MiB/s) ## Loading init Ramdisk from Legacy Image at 02880000 ... Image Name: uInitrd 2018-08-22 12:27:29 UTC Created: Image Type: ARM Linux RAMDisk Image (gzip compressed) 4686973 Bytes = 4.5 MiB Data Size: Load Address: 0000000 Entry Point: 0000000 ## Flattened Device Tree blob at 02040000 Booting using the fdt blob at 0x02040000 Using Device Tree in place at 02040000, end 02047b33 Skipping Device Tree update ('fdt skip update' = yes) Limit DDR size at 3GB due to power of 2 requirement of Address decoding Starting kernel ...

Linux

```
Uncompressing Linux... done, booting the kernel.
Loading, please wait...
starting version 232
Begin: Loading essential drivers ... done.
Begin: Running /scripts/init-premount ... done.
Begin: Mounting root file system ... Begin: Running /scripts/local-top ...
done.
Begin: Running /scripts/local-premount ... Scanning for Btrfs filesystems
done.
Begin: Will now check root file system ... fsck from util-linux 2.29.2
[/sbin/fsck.ext4 (1) -- /dev/mmcblk0p1] fsck.ext4 -a -C0 /dev/mmcblk0p1
/dev/mmcblk0p1: clean, 36372/887168 files, 283558/3779284 blocks
done.
done.
Begin: Running /scripts/local-bottom ... done.
Begin: Running /scripts/init-bottom ... done.
Welcome to Debian GNU/Linux 9 (stretch)!
  OK ] Created slice User and Session Slice.
  OK ] Reached target Swap.
[
  OK ] Reached target Remote File Systems.
[
[ OK ] Created slice System Slice.
        Mounting POSIX Message Queue File System...
  OK ] Created slice system-serial\x2dgetty.slice.
ſ
[
  OK ] Created slice system-getty.slice.
  OK ] Started Forward Password Requests to Wall Directory Watch.
[
  OK ] Listening on /dev/initctl Compatibility Named Pipe.
Γ
  OK ] Reached target Slices.
Γ
  OK ] Started Dispatch Password Requests to Console Directory Watch.
Γ
  OK ] Reached target Paths.
Γ
  OK ] Reached target Encrypted Volumes.
[
  OK ] Listening on fsck to fsckd communication Socket.
Γ
  OK ] Listening on Journal Audit Socket.
Γ
[
  OK ] Set up automount Arbitrary Executab...rmats File System Automount
Point.
[ OK ] Listening on udev Control Socket.
[ OK ] Listening on Syslog Socket.
[ OK ] Listening on Journal Socket (/dev/log).
        Mounting Debug File System...
[ OK ] Listening on udev Kernel Socket.
[ OK ] Listening on Journal Socket.
         Starting Set the console keyboard layout...
         Starting Journal Service...
         Starting Create list of required st...ce nodes for the current
kernel...
         Starting Load Kernel Modules...
         Starting Restore / save the current clock...
         Starting Remount Root and Kernel File Systems...
         Starting Nameserver information manager...
[ OK ] Mounted Debug File System.
[ OK ] Mounted POSIX Message Queue File System.
[ OK ] Started Create list of required sta...vice nodes for the current
kernel.
```

OK] Started Load Kernel Modules. OK] Started Remount Root and Kernel File Systems. Γ Starting Load/Save Random Seed... Starting udev Coldplug all Devices... Starting Apply Kernel Variables... Mounting FUSE Control File System... Starting Create Static Device Nodes in /dev... OK] Mounted FUSE Control File System. Γ OK] Started Journal Service. [OK] Started Set the console keyboard layout. [OK] Started Restore / save the current clock. [OK] Started Nameserver information manager. ſ OK] Started Load/Save Random Seed. [] Started Apply Kernel Variables. Γ OK Starting Flush Journal to Persistent Storage... OK] Started Flush Journal to Persistent Storage. Γ OK] Started Create Static Device Nodes in /dev. [OK] Reached target Local File Systems (Pre). [Mounting /tmp... Starting udev Kernel Device Manager... OK] Mounted /tmp. ſ [OK] Started udev Coldplug all Devices. OK] Reached target Local File Systems. [Starting Set console font and keymap... Starting Armbian ZRAM config... Starting Create Volatile Files and Directories... Starting Raise network interfaces... OK] Started Set console font and keymap. [OK] Started Create Volatile Files and Directories. [OK] Reached target System Time Synchronized. [Starting Update UTMP about System Boot/Shutdown... OK] Started Entropy daemon using the HAVEGE algorithm. [OK] Started Update UTMP about System Boot/Shutdown. [OK] Started udev Kernel Device Manager. [OK] Found device /dev/ttyS0. [OK] Started Armbian ZRAM config. [Starting Armbian memory supported logging... OK] Started Armbian memory supported logging. Γ OK] Reached target System Initialization. [Starting Armbian hardware monitoring ... OK] Started Daily Cleanup of Temporary Directories. Γ OK] Started Daily apt download activities. [OK] Started Daily apt upgrade and clean activities. [OK] Reached target Timers. [Starting Armbian hardware optimization... ſ OK] Listening on D-Bus System Message Bus Socket. OK] Reached target Sockets. ſ OK] Started Armbian hardware optimization. [OK] Started Raise network interfaces. [OK] Started Armbian hardware monitoring. Γ ſ OK] Reached target Basic System. Starting Login Service... Starting System Logging Service... Starting LSB: Load kernel modules needed to enable cpufreq scaling... [OK] Started Regular background program processing daemon. OK] Started D-Bus System Message Bus. [

Starting Network Manager... Starting LSB: Start/stop sysstat's sadc... OK] Started System Logging Service. Γ OK] Started LSB: Start/stop sysstat's sadc. Γ OK] Started Login Service. Γ OK] Started LSB: Load kernel modules needed to enable cpufreq scaling. Γ Starting LSB: set CPUFreq kernel parameters... OK] Started LSB: set CPUFreq kernel parameters. Γ Starting LSB: Set sysfs variables from /etc/sysfs.conf... [OK] Started LSB: Set sysfs variables from /etc/sysfs.conf. OK] Started Network Manager. [OK] Reached target Network. Γ Starting Permit User Sessions... Starting OpenBSD Secure Shell server... OK] Started Unattended Upgrades Shutdown. [Starting Network Manager Wait Online... [OK] Started Permit User Sessions. Starting Network Manager Script Dispatcher Service ... [OK] Started Network Manager Script Dispatcher Service. Starting Hostname Service... OK] Started Hostname Service. [[OK] Started OpenBSD Secure Shell server. Starting Authorization Manager... [OK] Started Network Manager Wait Online. OK] Reached target Network is Online. Γ Starting LSB: Advanced IEEE 802.11 management daemon... Starting /etc/rc.local Compatibility... Starting LSB: Start NTP daemon... OK] Started LSB: Advanced IEEE 802.11 management daemon. [OK] Started /etc/rc.local Compatibility. Γ [OK] Started Serial Getty on ttyS0. OK] Started Getty on tty1. [OK] Reached target Login Prompts. [OK] Started Authorization Manager. Γ OK] Started LSB: Start NTP daemon. Γ OK] Reached target Multi-User System. [[OK] Reached target Graphical Interface. Starting Update UTMP about System Runlevel Changes... [OK] Started Update UTMP about System Runlevel Changes. Debian GNU/Linux 9 helios4-test ttyS0 helios4-test login: