312587c675
* Move all previous info into Helios4 subfolder * Add helios64 subfolder * Update all url link Note: http server has been configure to ensure existing inbound link can still be resolved to the right page.
374 lines
13 KiB
Markdown
374 lines
13 KiB
Markdown
!!! warning
|
||
Always POWER OFF the system before plug/unplug the fan. Failed to do so could damage the controlling GPIO due to power surge.
|
||
|
||
## PWM Introduction
|
||
|
||
PWM, or pulse width modulation is a technique which allows us to adjust the average value of the voltage that’s going to the electronic device by varying duty cycle of the power at a fast rate.
|
||
|
||
The term *duty cycle* describes the proportion of 'on' time to the regular interval or 'period' of time; a low duty cycle corresponds to low power, because the power is off for most of the time. Duty cycle is expressed in percent, 100% being fully on. When a digital signal is on half of the time and off the other half of the time, the digital signal has a duty cycle of 50% and resembles a "square" wave. When a digital signal spends more time in the on state than the off state, it has a duty cycle of >50%. When a digital signal spends more time in the off state than the on state, it has a duty cycle of <50%. Here is a pictorial that illustrates these three scenarios:
|
||
|
||
![PWM duty cycle](/helios4/img/pwm/pwm_duty_cycle_graph.png)
|
||
|
||
## PWM Fan Implementation
|
||
|
||
### Type-A
|
||
|
||
![Type A Curve](/helios4/img/pwm/fan_type_a_curve.jpg)
|
||
|
||
### Type-B
|
||
|
||
![Type B Curve](/helios4/img/pwm/fan_type_b_curve.jpg)
|
||
|
||
### Type-C
|
||
|
||
![Type C Curve](/helios4/img/pwm/fan_type_c_curve.jpg)
|
||
|
||
## Helios4 Fan Control Schematic
|
||
|
||
### Board Rev 1.1
|
||
|
||
![Helios4 Fan control Rev1.1](/helios4/img/pwm/fan_control_schematic_rev1_1.png)
|
||
|
||
**Remarks**
|
||
|
||
| Description | Header J10 | Header J17 | Remarks |
|
||
|-----------|---------|-----------|---------|
|
||
| PWM pin | gpio41 | gpio55 | 3.3V pull up fan **ONLY**! Early generation of 4-wire pwm fan may use 5V pull-up |
|
||
| SENSE pin | gpio43 | gpio48 | SENSE pin is not implemented yet |
|
||
| PWM Frequency | 25 kHz | 25 kHz | defined in device tree |
|
||
|
||
### Board Rev 1.2
|
||
|
||
![Helios4 Fan control Rev 1.2](/helios4/img/pwm/fan_control_schematic_rev1_2.png)
|
||
|
||
**Remarks**
|
||
|
||
| Description | Header J10 | Header J17 | Remarks |
|
||
|-----------|---------|-----------|---------|
|
||
| PWM pin | gpio41 | gpio55 | 5V tolerant |
|
||
| SENSE pin | gpio43 | gpio48 | SENSE pin is not implemented yet |
|
||
| PWM Frequency | 25 kHz | 25 kHz | defined in device tree |
|
||
|
||
## Bundled Fan
|
||
|
||
![Fan Connector](/helios4/img/pwm/fan_connector.png)
|
||
|
||
Connector Pinout
|
||
|
||
| Pin | Function | Wire Color |
|
||
|-----|----------|------------|
|
||
| 1 | GND | Black |
|
||
| 2 | 12V | Red |
|
||
| 3 | Sense | Yellow |
|
||
| 4 | Control | Blue |
|
||
|
||
|
||
### Type-A Fan (Batch 1 & 3)
|
||
|
||
![Type-A Fan](/helios4/img/pwm/fan_type_a_photo.jpg)
|
||
|
||
Fan Specification
|
||
|
||
| Parameter | Value | Unit | Remarks |
|
||
|---------------|----------|------|---------|
|
||
| Maximum Speed | 4200 | RPM | @ duty cycle 98% |
|
||
| Minimum Speed | 1200 | RPM | @ duty cycle 24% |
|
||
| Shut off | No | | Not Supported |
|
||
| Implementation Type | A | | |
|
||
|
||
![Type-A Fan Speed Graph](/helios4/img/pwm/fan_speed_graph_type_a_fan.png)
|
||
|
||
!!! info
|
||
Duty cycle data is converted from Linux PWM
|
||
|
||
### Type-C Fan (Batch 2)
|
||
|
||
![Type-C Fan](/helios4/img/pwm/fan_type_c_photo.jpg)
|
||
|
||
Fan Specification
|
||
|
||
| Parameter | Value | Unit | Remarks |
|
||
|---------------|----------|------|---------|
|
||
| Maximum Speed | 4200 | RPM | @ duty cycle 98% |
|
||
| Minimum Speed | 400 | RPM | @ duty cycle 10% |
|
||
| Shut off | Yes | | duty cycle <= 5.5% and restart @ duty cycle > 9% |
|
||
| Implementation Type | C | | |
|
||
|
||
![Type-C Speed Graph](/helios4/img/pwm/fan_speed_graph_type_c_fan.png)
|
||
|
||
!!! info
|
||
Duty cycle data is converted from Linux PWM
|
||
|
||
### Fan Speed Comparison
|
||
|
||
![Fan Speed Graph](/helios4/img/pwm/fan_speed_comparison.png)
|
||
|
||
|
||
## Helios4 Temperature Sensors
|
||
|
||
### CPU Thermal Sensor
|
||
|
||
Armada 388 incorporates a Thermal Management engine for monitoring die temperature. It includes an on-die analog-to-digital thermal sensor, that is used to determine when the maximum specified processor junction temperature has been reached.
|
||
|
||
### Ethernet PHY Thermal Sensor
|
||
|
||
Helios4's **10/100/1000 BASE-T PHY Tranceiver** ([Marvell 88E1512 Datasheet](http://www.marvell.com/documents/eoxwrbluvwybgxvagkkf/)) features an internal temperature sensor. The sensor reports the die temperature and is updated approximately once per second.
|
||
|
||
### Board Temp Sensor
|
||
|
||
Helios4 has a **Digital Temperature Sensor with 2‐wire Interface** ([NCT75 Datasheet](https://www.onsemi.com/pub/Collateral/NCT75-D.PDF)), located on bottom side of the board. It is used to read ambient temperature.
|
||
|
||
|
||
## PWM Fan Control under Linux
|
||
|
||
Linux use 8-bit integer to represent duty cycle. PWM value 0 represent 0% duty cycle and PWM value 255 represent 100% duty cycle.
|
||
|
||
![Duty Cycle Formula](/helios4/img/pwm/fan_duty_cycle_formula.png)
|
||
|
||
Below graphs are bundled fan speed vs pwm value instead of duty cycle.
|
||
|
||
![Type-A Fan Speed Graph](/helios4/img/pwm/fan_speed_graph_type_a_fan_linux.png)
|
||
|
||
![Type-C Fan Speed Graph](/helios4/img/pwm/fan_speed_graph_type_c_fan_linux.png)
|
||
|
||
|
||
### Patch requirement
|
||
|
||
Currently Linux gpio-mvebu driver does not allow more than 1 PWM under the same gpio bank. Helios4 uses 2 PWM under same bank therefore [this patch](https://raw.githubusercontent.com/armbian/build/master/patch/kernel/mvebu-next/92-mvebu-gpio-remove-hardcoded-timer-assignment.patch) needs to be applied to kernel source to remove the restriction.
|
||
|
||
### Using SYSFS interface
|
||
|
||
Linux export the fan control mechanism to SYSFS under hwmon class.
|
||
List of devices can be checked under /sys/class/hwmon
|
||
|
||
```
|
||
ls -l /sys/class/hwmon/
|
||
total 0
|
||
lrwxrwxrwx 1 root root 0 Jul 26 07:39 hwmon0 -> ../../devices/platform/soc/soc:internal-regs/f1072004.mdio/mdio_bus/f1072004.mdio-mii/f1072004.mdio-mii:00/hwmon/hwmon0
|
||
lrwxrwxrwx 1 root root 0 Jul 26 07:39 hwmon1 -> ../../devices/virtual/thermal/thermal_zone0/hwmon1
|
||
lrwxrwxrwx 1 root root 0 Jul 26 07:39 hwmon2 -> ../../devices/platform/soc/soc:internal-regs/f1011000.i2c/i2c-0/0-004c/hwmon/hwmon2
|
||
lrwxrwxrwx 1 root root 0 Jul 26 07:39 hwmon3 -> ../../devices/platform/j10-pwm/hwmon/hwmon3
|
||
lrwxrwxrwx 1 root root 0 Jul 26 07:39 hwmon4 -> ../../devices/platform/j17-pwm/hwmon/hwmon4
|
||
```
|
||
|
||
!!! info
|
||
The numbering may different from above example output. It depends on whether the driver built as kernel module or built-in, device initialization order. Take this as consideration when using [fancontrol](#fancontrol-automated-software-based-fan-speed-control)
|
||
|
||
To identify which hwmon belong to fan, look for *j10-pwm* and *j17-pwm*. On above example
|
||
|
||
```
|
||
hwmon3 -> ../../devices/platform/j10-pwm/hwmon/hwmon3
|
||
hwmon4 -> ../../devices/platform/j17-pwm/hwmon/hwmon4
|
||
```
|
||
|
||
To read current PWM
|
||
```
|
||
cat /sys/class/hwmon3/pwm1
|
||
cat /sys/class/hwmon4/pwm1
|
||
```
|
||
|
||
To set PWM
|
||
```
|
||
echo NEW_PWM_VALUE > /sys/class/hwmon3/pwm1
|
||
echo NEW_PWM_VALUE > /sys/class/hwmon4/pwm1
|
||
```
|
||
|
||
### Fancontrol - automated software based fan speed control
|
||
|
||
fancontrol is a shell script for use with lm_sensors. It reads its configuration from a file, then calculates fan speeds from temperatures and sets the corresponding PWM outputs to the computed values.
|
||
|
||
```
|
||
sudo apt-get install fancontrol
|
||
```
|
||
|
||
fancontrol includes *pwmconfig* script to create automatically a configuration file but it can not be used for Helios4.
|
||
|
||
|
||
#### UDEV rules
|
||
|
||
Since hwmon order can be changed between kernel version or even between reboot, on Armbian we use udev rules as workaround. The rules can be found from [here](https://raw.githubusercontent.com/armbian/build/master/packages/bsp/helios4/90-helios4-hwmon.rules) and to be copy to **/etc/udev/rules.d/**
|
||
|
||
*/dev/fan-j10, /dev/fan-j17, /dev/thermal-cpu, /dev/thermal-board,* and */dev/thermal-eth* are symlinks generated by the udev rules.
|
||
|
||
#### Configuration File
|
||
|
||
fancontrol uses **/etc/fancontrol** as configuration file. Below is an example configuration to control fan speed on Helios4.
|
||
|
||
```
|
||
# Helios4 PWM Fan Control Configuration
|
||
# Temp source : /dev/thermal-cpu
|
||
INTERVAL=10
|
||
FCTEMPS=/dev/fan-j10/pwm1=/dev/thermal-cpu/temp1_input /dev/fan-j17/pwm1=/dev/thermal-cpu/temp1_input
|
||
MINTEMP=/dev/fan-j10/pwm1=40 /dev/fan-j17/pwm1=40
|
||
MAXTEMP=/dev/fan-j10/pwm1=80 /dev/fan-j17/pwm1=80
|
||
MINSTART=/dev/fan-j10/pwm1=20 /dev/fan-j17/pwm1=20
|
||
MINSTOP=/dev/fan-j10/pwm1=29 /dev/fan-j17/pwm1=29
|
||
MINPWM=20
|
||
```
|
||
|
||
INTERVAL
|
||
|
||
This variable defines at which interval in seconds the main loop of fancontrol will be executed.
|
||
|
||
FCTEMPS
|
||
|
||
Maps PWM outputs to temperature sensors so fancontrol knows which temperature sensors should be used for calculation of new values for the corresponding PWM outputs.
|
||
|
||
Fans (**fan-j10** & **fan-j17**) are controlled based on CPU thermal sensor (**thermal-cpu**) reading.
|
||
|
||
MINSTART
|
||
|
||
Sets the minimum speed at which the fan begins spinning. You should use a safe value to be sure it works, even when the fan gets old.
|
||
|
||
Type-C fan restart at 15, added 5 for safety (in case of aging fan) give us **20**. The value does not affect Type-A fan.
|
||
|
||
MINSTOP
|
||
|
||
The minimum speed at which the fan still spins. Use a safe value here, too.
|
||
|
||
Type-C fan stopped at 24, added 5 for safety (in case of aging fan) give us **29**. The value does not affect Type-A fan.
|
||
|
||
-----
|
||
|
||
*Following settings can be adjusted by user to tweak further.*
|
||
|
||
MINTEMP
|
||
|
||
The temperature below which the fan gets switched to minimum speed.
|
||
|
||
Fans (fan-j10 & fan-j17) runs in minimum speed if the CPU temperature below **40** degree C.
|
||
|
||
MAXTEMP
|
||
|
||
The temperature over which the fan gets switched to maximum speed.
|
||
|
||
Fans (fan-j10 & fan-j17) runs in maximum speed if the CPU temperature above **80** degree C.
|
||
|
||
MINPWM
|
||
|
||
The PWM value to use when the temperature is below MINTEMP. Typically, this will be either 0 if it is OK for the fan to plain stop, or the same value as MINSTOP if you don't want the fan to ever stop. If this value isn't defined, it defaults to 0 (stopped fan).
|
||
|
||
Set minimum PWM value to **0**. On Type-C fan, it would stopped the fan while on Type-A fan it would run in minimal speed.
|
||
|
||
|
||
!!! note
|
||
The Helios4 fancontrol configuration file can be found [here](https://raw.githubusercontent.com/armbian/build/master/packages/bsp/helios4/fancontrol_pwm-fan.conf).
|
||
|
||
### Thermal Zone on Device Tree
|
||
|
||
As an alternative to userspace tool like [fancontrol](#fancontrol-automated-software-based-fan-speed-control), Linux Kernel provides Thermal Framework to do thermal management.
|
||
|
||
Below is an example of device tree nodes that can be added to Helios4 device tree to make use of Linux Thermal Framework.
|
||
|
||
!!! note
|
||
Currently *armada_thermal* driver ([CPU Thermal Sensor](#cpu-thermal-sensor)) does not support thermal-zone binding in device tree, therefore it can not be used as thermal-sensor yet.
|
||
|
||
```
|
||
/ {
|
||
...
|
||
|
||
fan1: j10-pwm {
|
||
compatible = "pwm-fan";
|
||
pwms = <&gpio1 9 40000>; /* Target freq:25 kHz */
|
||
cooling-min-state = <0>;
|
||
cooling-max-state = <3>;
|
||
#cooling-cells = <2>;
|
||
cooling-levels = <0 25 128 255>;
|
||
};
|
||
|
||
fan2: j17-pwm {
|
||
compatible = "pwm-fan";
|
||
pwms = <&gpio1 23 40000>; /* Target freq:25 kHz */
|
||
cooling-min-state = <0>;
|
||
cooling-max-state = <3>;
|
||
#cooling-cells = <2>;
|
||
cooling-levels = <0 25 128 255>;
|
||
};
|
||
|
||
thermal-zones {
|
||
microsom_thermal: microsom-thermal {
|
||
thermal-sensors = <&thermal>;
|
||
polling-delay-passive = <250>; /* milliseconds */
|
||
polling-delay = <500>; /* milliseconds */
|
||
trips {
|
||
cpu_active: cpu_active {
|
||
/* millicelsius */
|
||
temperature = <40000>;
|
||
hysteresis = <2000>;
|
||
type = "active";
|
||
};
|
||
|
||
cpu_alert: cpu_alert {
|
||
/* millicelsius */
|
||
temperature = <80000>;
|
||
hysteresis = <2000>;
|
||
type = "hot";
|
||
};
|
||
|
||
cpu_crit: cpu-crit {
|
||
/* millicelsius */
|
||
temperature = <115000>;
|
||
hysteresis = <5000>;
|
||
type = "critical";
|
||
};
|
||
};
|
||
};
|
||
|
||
board_thermal: board-thermal {
|
||
thermal-sensors = <&temp_sensor>;
|
||
polling-delay-passive = <0>; /* milliseconds */
|
||
polling-delay = <1500>; /* milliseconds */
|
||
trips {
|
||
board_active: board-active {
|
||
/* millicelsius */
|
||
temperature = <40000>;
|
||
hysteresis = <2000>;
|
||
type = "active";
|
||
};
|
||
|
||
board_alert: board-alert {
|
||
/* millicelsius */
|
||
temperature = <60000>;
|
||
hysteresis = <2000>;
|
||
type = "hot";
|
||
};
|
||
|
||
board_critical: board-critical {
|
||
/* millicelsius */
|
||
temperature = <70000>;
|
||
hysteresis = <2000>;
|
||
type = "critical";
|
||
};
|
||
};
|
||
|
||
cooling-maps {
|
||
map0 {
|
||
trip = <&board_active>;
|
||
cooling-device = <&fan1 THERMAL_NO_LIMIT 2>,
|
||
<&fan2 THERMAL_NO_LIMIT 2>;
|
||
};
|
||
map1 {
|
||
trip = <&board_alert>;
|
||
cooling-device = <&fan1 2 THERMAL_NO_LIMIT>,
|
||
<&fan2 2 THERMAL_NO_LIMIT>;
|
||
};
|
||
};
|
||
};
|
||
};
|
||
...
|
||
};
|
||
|
||
&temp_sensor {
|
||
#thermal-sensor-cells = <0>;
|
||
};
|
||
```
|
||
|
||
## References
|
||
|
||
[Pulse-width modulation](https://en.wikipedia.org/wiki/Pulse-width_modulation)
|
||
|
||
[4-Wire Pulse Width Modulation (PWM) Controlled Fans Specification rev. 1.3](/helios4/files/fan/4_Wire_PWM_Spec.pdf)
|
||
|
||
[fancontrol man page](https://linux.die.net/man/8/fancontrol)
|
||
|
||
[Linux Thermal Framework Device Tree descriptor](https://www.kernel.org/doc/Documentation/devicetree/bindings/thermal/thermal.txt)
|